
Francesco Lamonica - 30/4/2021

Testing with Qt / QtCreator

Testing
Unit, System, Integration, Validation… whatever

• There are many kind of testing: (wikipedia)

• unit: In computer programming, unit testing is a software testing method by which
individual units of source code—sets of one or more computer
program modules together with associated control data, usage procedures, and
operating procedures—are tested to determine whether they are fit for use.

• integration: is the phase in software testing in which individual software modules
are combined and tested as a group. Integration testing is conducted to evaluate
the compliance of a system or component with specified functional requirements

• system / validation: System testing is testing conducted on a complete integrated
system to evaluate the system's compliance with its specified requirements.

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Procedure_(computer_science)
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Regulatory_compliance
https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Requirements

Testing
schema

• At the end of the day whatever test (unit, integration, system) you are doing is
basically:

• Provide the [function|module|system] a known input and confront the output
with the expected one

Testing environment
Enter QtCreator…

• To program in C++ we normally use QtCreator but this IDE can do much more
than just edit / debug C++ files

• Setup a testing environment for our project

• Run tests to assure that we did not introduce any regression

Testing with QtCreator
SUBDIRS project

• First of all in the same toplevel repository of your project create a new project
of type SUBDIRS called “tests” or “ut”

TEMPLATE = subdirs

SUBDIRS += \

TestTimeUtilsTicking \

TestFileWriterRotationScenarios

Testing with QtCreator
The Auto test project

• Then, for each class / scenario / test case you want, create an AutoTest
Project

Testing with QtCreator
The Auto test project - 2

• And choose the “tests” project folder you created earlier

Testing with QtCreator
The Auto test project - 3

• Then choose the name of the class that will store your test cases

• check whether the test cases will need either GUI or Application

Testing with QtCreator
The Auto test project - 4

• The resulting .pro will be like this:

QT += testlib

QT -= gui

CONFIG += qt console warn_on depend_includepath testcase

CONFIG -= app_bundle

TEMPLATE = app

UNQLPATH = $$PWD/../../lib

INCLUDEPATH += $$UNQLPATH/src

SOURCES += tst_timeutilstickingchecks.cpp \

$$UNQLPATH/src/TimeUtils.cpp

Testing with QtCreator
The project structure

• Eventually you will end with a structure similar to this

Testing with QtCreator
Conventions

• Auto tests files should start with “tst_” prefix

• All test cases should be defined as “private slots” methods in test classes in order to be
executed automatically

• Each auto test project should test one class (but multiple test cases)

• This class should be called within one of the 3 macros:

• QTEST_APPLESS_MAIN(YourTestClassName) - to test GUI-less classes that do not
need QCoreApplication

• QTEST_GUILESS_MAIN(YourTestClassName) - to test console-based apps/classes

• QTEST_MAIN(YourTestClassName) - to test graphical classes

Testing with QtCreator
Useful macros

• QSKIP(ReasonString): put in a test and it will be skipped printing the
ReasonString in the report

• QVERIFY(boolean condition): this is one of the 2 main macro to be used to
test that your test is doing what is supposed to do: that the boolean condition is
true

• QCOMPARE(val1, val2): compares two values and fails if they are different, the
main advantage over QVERIFY(val1==val2) is that the two values are printed

• QBENCHMARK{ CODE BLOCK }: will write in the report the time spent in that
block

Testing with QtCreator
What now?

• Ok we have created our subdirs project and all the auto-tests sub-projects,
and now?

• Go to the tests folder and type:

• make check

• All the auto-tests will be run and verified automatically and the summary report
will be printed in console (or within QtCreator)

Testing with QtCreator
An example from the docs

#include <QtTest/QtTest>

class TestQString: public QObject

{

Q_OBJECT

private slots:

void toUpper();

};

void TestQString::toUpper()

{

QString str = "Hello";

QCOMPARE(str.toUpper(), QString("HELLO"));

}

QTEST_MAIN(TestQString)

#include "testqstring.moc"

********* Start testing of TestQString *********

Config: Using QtTest library %VERSION%, Qt

%VERSION%

PASS : TestQString::initTestCase()

PASS : TestQString::toUpper()

PASS : TestQString::cleanupTestCase()

Totals: 3 passed, 0 failed, 0 skipped

********* Finished testing of TestQString *********

https://doc.qt.io/qt-5/qttest-module.html
https://doc.qt.io/qt-5/qt.html

How do you write a test?

Writing Tests
best practice - 1

• Writing Unit and Integration / System tests can be different:

• Unit tend to be self-contained, you only need the class that holds the
function you want to test and you’re good to go

• System tests means that you want to test a feature end-to-end this (in terms
of the auto-test project) result in a .pro file that will certainly include many
classes, possibly linking dependent libraries to create an executable that
provides the feature we want to test

Writing Tests
best practice - 2

• To better deal with System tests when creating a project always split your .pro file in two:

• a .pri file that includes all the project

• sources,

• headers,

• linking commands to dependencies

• a .pro file that includes:

• the above .pri file

• main.cpp

• versioning and other application specific configurations

Writing Tests
best practice - 3

• Tests should be run often (at every build eventually) so keep them small and
lean: Much much better to create multiple tests that you can eventually skip if
needed

• Tests should be idempotent: system tests may alter the environment (i.e. write
a file) always cleanup after you are done so that you are always in control of
all of your inputs and outputs

• Don’t Repeat Yourself: if you need some “plumbing” code to enable your tests,
by all means put it in a TestClass::method and call it when needed (don’t put it
in your test code)

Writing Tests
best practice - 4

• In order to allow easier setup/tear-down of tests Qt offers the following
methods (to be declared as “private slots”)

• initTestCase() will be called before the first test function is executed.

• init() will be called before each test function is executed.

• cleanup() will be called after every test function.

• cleanupTestCase() will be called after the last test function is executed.

Writing Tests
best practice - 5

• In order to allow easier setup/tear-down of tests Qt offers the following
methods (to be declared as “private slots”)

• initTestCase() will be called before the first test function is executed.

• init() will be called before each test function is executed.

• cleanup() will be called after every test function.

• cleanupTestCase() will be called after the last test function is executed.

Writing Tests
best practice - 6

• Don’t stick to the “happy path” fuzz your
inputs and test that your
[function|system|whatever] remain
coherent

• Remember the sample toUpper() test ?
What if we want to test multiple inputs?

• Qt Offers the “*_data()” methods to ease
the repetition of a test against multiple
inputs

#include <QtTest/QtTest>

class TestQString: public QObject

{

Q_OBJECT

private slots:

void toUpper();

};

void TestQString::toUpper() {

QCOMPARE(“HEllo”, QString("HELLO"));

QCOMPARE(“hellO”, QString("HELLO"));

QCOMPARE(“HeLlO”, QString("HELLO"));

}

QTEST_MAIN(TestQString)

#include "testqstring.moc"

Writing Tests
best practice - 7

• First refactor toUpper() using the QFETCH
macro to get some generic “StringToTest”
and “ExpectedResult” both of type String

• Then implement the toUpper_data()
private slot that will help us populate those
generic variable with multiple data

• toUpper() thanks to the QFECTH macro
will be tested against all possible inputs

#include <QtTest/QtTest>

class TestQString: public QObject

{

Q_OBJECT

private slots:

void toUpper();

};

void TestQString::toUpper_data() {

QTest::addColumn<QString>("StringToTest");

QTest::addColumn<QString>("ExpectedResult");

QTest::newRow("all lower") << "hello" << "HELLO";

QTest::newRow("mixed") << "Hello" << "HELLO";

QTest::newRow("all upper") << "HELLO" << "HELLO";

}

void TestQString::toUpper() {

QFETCH(QString, StringToTest);

QFETCH(QString, ExpectedResult);

QCOMPARE(StringToTest, ExpectedResult);

}

QTEST_MAIN(TestQString)

#include "testqstring.moc"

https://doc.qt.io/qt-5/qtest.html
https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qtest.html
https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qtest.html
https://doc.qt.io/qt-5/qtest.html
https://doc.qt.io/qt-5/qtest.html

Writing Tests
best practice - 8

• Test should be isolated and not depending on other tests or internal states

• Should i write “C” code?

• Leverage C++ constructs

• Dependency Injection / Factories / inheritance / special accessors

• How to test protected functions?

• How to test private functions?

UniqLogger use-case

UniqLogger use case
The size-based file rotation

• UniqLogger already had the size-based file rotation that would store log
messages over a configurable number “n” files switching to a new one when
the current reached the maximum size that was configured

• What happens after we reached logging to “n” files is defined by a policy

• strictrotation (similar to logrotate)

• incremental number

UniqLogger use case
The size-based file rotation - 2

• strictrotation (similar to logrotate)

• log.txt will always hold the most recent logs

• log-1.txt will hold the slightly older ones

• log-n.txt will be storing the oldest logs

• each time log.txt reaches the max size the “log-n.txt” is scrapped and all
the others renamed accordingly: i.e. log-1.txt -> log-2.txt

• a new log.txt is started

UniqLogger use case
The size-based file rotation - 3

• incremental number

• log.txt will always hold the oldest logs

• log-X.txt will be storing the newest logs

• each time log-X.txt reaches the max size:

• all the oldest log files are scrapped (up to log-(X-n).txt)

• a new log-(X+1).txt is started

• this is more performant since there is no moving around all the old files

UniqLogger use case
The size-based file rotation - 4

• Did i hear someone mentioning ZIP?

• Either policy can be also configured to (g)zip the other than most-recent log
file to save space

• We have a lots of possible use-cases: log-n.gz, log-n.zip, etc.

UniqLogger use case
Enters the time-based file rotation

• When you have a production environment, defects are reported with the time
when they occurred, if the log files are rotated just on a size basis two things
can happen:

• the log messages were too fast and fill up the number of files that were
configured -> you lost your logs!

• you have configured a big-enough size for the log files but it could be
cumbersome to analyse a file big hundreds of MB

• we need a time-based rotation

UniqLogger use case
time-based file rotation goals

• Obviously the time-based rotation should sit “on top” of other size-based
rotation because there can be environments (kalliope, Atena bots, etc.) where
the size constraint might be mandatory

• So i decided to allow: Day, Hour and minute (mostly for development) rotation
policies that would switch log file whenever a new [day|hour|minute] “ticks”

UniqLogger use case
time-based file rotation policies

• So i decided to allow: Day, Hour and minute (mostly for development) rotation
policies that would switch log file whenever a new [day|hour|minute] “ticks”

• Upon suggestion there was another possible policy: elapsed time

• this would trigger the switch to new file whenever the time elapsed not when
the threshold (day, hour) “ticked”.

UniqLogger use case
time-based file rotation examples

• HourlyRotation

• if we started logging at 2021-04-30T17:58:34 we would have

• initial logfile: log-2021-04-30T17:58:34.txt and we would switch to the new
file when the hour ticks: log-2021-04-30T18:00:00.txt

• in this case the initial log file will be storing just 26 minutes worth of logs.

• next log file will be log-2021-04-30T19:00:00.txt

UniqLogger use case
time-based file rotation examples - 2

• HourlyRotation with strict size-based rotation (3 files of max 10MB each)

• if we started logging at 2021-04-30T17:58:34 we would have

• initial logfile: log-2021-04-30T17:58:34.txt

• suppose we write less than 10MB in 26min

• would switch to the new file when the hour ticks: log-2021-04-30T18:00:00.txt

• now suppose we write more than 10MB in 40min

• current log file will be renamed (and maybe zipped) to log-2021-04-30T18:00:00-1.zip

• new log file will be still log-2021-04-30T18:00:00.txt and would be holding logs starting from
2021-04-30T18:40:00

UniqLogger use case
time-based file rotation examples - 3

• [Daily|Hourly|PerMinute]Rotation with [strict|incremental] size-based rotation
would be following the same patterns

• If you are starting to think that it seems a bit difficult to get it right you are
smarter than me

• I started over 3 times and the last one i decided that i needed tests!

Let’s go to the code

